LionWeb Meta-Metamodel (M3)
Version 2023.1

In this document we describe the Meta-Metamodel used by LionWeb. The Meta-
Metamodel is called LionCore.

Table of Contents

1. Introduction 2
1.1. Goals 2
1.2. Languages supported 2
1.3. What kind of models should be expressible? 2

2. Overview 3

3. Definition of the meta-metamodel 4
3.1. Concepts 4

3.1.1. Language 4
3.1.2. Concept 5
3.1.3. Annotation 5
3.1.4. Interface 7
3.1.5. PrimitiveType 8
3.1.6. Enumeration 8
3.1.7. EnumerationLiteral 9
3.1.8. Containment 9
3.1.9. Reference 10
3.1.10. Property 10
3.2. Abstract concepts 11
3.2.1. LanguageEntity 11
3.2.2. Classifier 12
3.2.3. DataType 12
3.2.4. Feature 13
3.2.5. Link 14
3.3. Interfaces 15
3.3.1. IKeyed 15
3.4. Pre-defined keys and ids 15
3.4.1. Keys of M3 elements 16
3.4.2. 1ds of built-in elements 17
3.5. Built-in elements 17
3.5.1. Concepts 17

[y
oo

3.5.2. Interfaces

3.5.3. Primitive types 18

3.6. Supporting terminology 18
3.6.1. Multiplicity 18
3.6.2. Partitions 19
3.6.3. Identifiers 19
3.6.4. Keys 20
3.6.5. Namespaces 20

4. Other considerations 20

4.1. Reflection 20

4.2. Generics 20

4.3. References to language elements 20

4.4. Union or intersection types 21

4.5. Operations 21

5. Reference models 21
5.1. Meta-meta model 21
5.2. Pre-defined elements 68

6. Comparison with other meta-metamodels 75
6.1. Comparison with Ecore 76
6.2. Comparison with MPS 76

1. Introduction

1.1. Goals

The goal is to define a meta-metamodel that can be used in different contexts and implemented
from different languages.

The approach taken would be conservative: we want to provide boring and proven infrastructure,
so that innovation can be built on top of it.

This will be based on the experience that we as a community had with the meta-metamodel used in
EMF and MPS mainly. Suggestions based on the experience obtained with other meta-metamodels
are also very welcome.

1.2. Languages supported

We aim to have the initial implementations being available in Java and Typescript. We are
interested in implementing it in other languages too, but not as part of the initial effort.

1.3. What kind of models should be expressible?

Any kind of model. In other words, models specified using metamodels expressed through this
Meta-Metamodel should not make any assumptions on the node being obtained from parsing text

or a graphical modeling tool or a projectional editor. All these possible origins should be supported,
with specific extensions were necessary.

For example, metamodels should be expressed to define:

» The Abstract Syntax Tree (AST) of existing textual programming languages such as Java, RPG,
Python, or SAS

» The Abstract Syntax Tree (AST) of DSLs backed by projectional editors. For example, DSLs used
to define tax calculations or automation rules for email marketing systems

2. Overview

Let’s first see a representation of the meta-metamodel using (a tiny subset of) the UML’s class
diagram notation.

builtins\

@ INamed
name: String

A

«partition»
[@ EnumerationLiteraI] Language dependsOn
version: String

*|

@ Feature
— [@ LanguageEntity]
optional: Boolean
g4
]+

ype

multiple: Boolean

* 1
@) Link
] © Property features @ DataType literals
*

type
1

)
[@ Reference] [@ Containment] [@ PrimitiveType] [@ Enumeration]
Vo Y

annotates

* @ Concept | *
@Annotatlon 0 extends abstract: Boolean | 0 extends
*

partition: Boolean

+

implements |implements

#

*
x
© Interface| * extends

Feature

Classifier
DataType

3. Definition of the meta-metamodel

In this section we describe the single elements composing the Meta-Metamodel. We will list
elements by their type: classes, abstract classes and interfaces.

3.1. Concepts

The concepts are Language, Concept, Annotation, Interface, PrimitiveType, Enumeration,
EnumerationLiteral, Containment, Reference, and Property.

3.1.1. Language

A Language'’ will provide the Concepts necessary to describe ideas in a particular domain together
with supporting elements necessary for the definition of those Concepts.

It also represents the namespace for LanguageEntities.

Example

For example, a Language for accounting could collect several Concepts such as Invoice, Customer,
InvoiceLine, Product. It could also contain related elements necessary for the definitions of the
concepts. For example, a DataType named Currency.

EMF & MPS equivalent

A Language in LionWeb will be roughly equivalent to an EPackage or the contents of the structure
aspect of an MPS Language.

A Language will not have a URI or a prefix, differently from EPackages.
A Language will have a version string, different from MPS Languages' version number.

Differently from EPackages and MPS Languages, there is no way to group language elements.
EPackages have instead sub-packages and MPS Languages have virtual folders. For this use case,
different Languages could be used instead.

Characteristics

[3114]

A Language has a name, a key™”, and a version™"", similar to MPS Languages.

Each Language will contain a list of Language entities in its entities containment.
A Language is an INamed (as it has a name) and an IKeyed (as it has a key)"".

A Language can depend on other Languages via dependsOn reference.” Dependencies must be
explicitly declared.”

Constraints

version can be any non-empty String_[sngl

Language elements contained in a Language are allowed to refer to these other Language

elements:"”

* within the same language
» within declared dependencies

» within transitive dependencies.

Example: if Language B depends on Language A, and Language C depends on B, then Language
C can also refer to members of Language A without explicitly declaring a dependency.

A Language CAN declare a transitive dependency explicitly. In the example above, Language C CAN
declare an explicit dependency on Language A.

As any Language depends (at least transitively and implicitly) on built-ins elements, a Language
CAN declare a dependency on builtins — but does not need to."”

3.1.2. Concept
A Concept represents a category of entities sharing the same structure.

Example

For example, Invoice would be a Concept. Single entities could be Concept instances, such as Invoice
#1/2022.

EMF & MPS equivalent

A Concept is roughly equivalent to an EClass (with the isInterface flag set to false) or an MPS’s
ConceptDeclaration.

Characteristics

A Concept has a name and an key.
A Concept can be concrete (i.e., instantiable) or abstract, marked by boolean abstract property.
(1]

A Concept can be marked as partition via the boolean partition property.

A Concept is a Classifier (as it has features). It is indirectly a LanguageEntity (as it is a top level
element in a Language), an INamed (as it has a name), a IKeyed (as it has a key).

Each Concept extends zero or one Concepts. If no Concepts are explicitly extended, the Concept will
implicitly extend the Concept Node. Node is the only concept that truly does not extend any Concept.

A Concept implements zero or more Interfaces.

A Concept can have any number of features, given it is a Classifier.
Constraints

A Concept MUST NOT extend itself, or form circles via extends.
3.1.3. Annotation

An Annotation is an additional piece of information attached to potentially any node, sharing the
node’s lifecycle. The annotated node (or its concept) does not need to know about the

annotation."” Annotations CAN be attached to other Annotations (although this structure is hard to
comprehend, and should be used with caution).

Annotations should only have limited content because the more complex the annotation is, the
more likely it should not be part of the annotated node’s lifecycle — We might want to reuse the
complex annotation somewhere else.

Example: In MPS, the editor of a concept can be seen as an annotation of that concept. But even if
we deleted the concept, we might want to reuse the editor for another (similar) concept.

Annotations' contents should be orthogonal to the annotated node, because actual content should
be part of the original concepts, and unrelated contents should be somewhere else.

Example: Let’s assume our Language defines a Date PrimitiveType. We might annotate Date with
@Javalmplementation(java.util.Date) and @TypeScriptImplementation(JsJoda.LocalDate). Our core
model stays platform-independent, but we maintain the implementation details at the right
place —if we ever deleted Date, all related information would be gone without further cleanup.

Example

We design a fancy documentation language, and can annotate any other node with such
documentation.

EMF & MPS equivalent

An Annotation is equivalent to MPS' NodeAttribute. In EMF, an Adapter can be used for similar
purposes on M1 models. On M2 models (i.e. Ecore), an Annotation corresponds to an EAnnotation.

Characteristics

An Annotation has a name and an key.

An Annotation is a Classifier, and indirectly a LanguageEntity (as it is a top level element in a
Language), an INamed (as it has a name), a [Keyed (as it has a key).

Each Annotation specifies which Classifiers it annotates. If it should be applicable to any node, it
annotates Node.

Annotations can specify which Annotation it extends and which interfaces it implements. An
Annotation CAN have any number of features, given it is a Classifier.

Constraints

We CANNOT redefine annotates in a sub-annotation (i.e. an annotation that extends another)."”

We MUST attach an instance of an Annotation only to instances of the Concept the Annotation
annotates (and sub-concepts thereof). We can attach be zero, one, or more instances to a single
annotated node."”

Annotation examples

Builtins\

@ «Annotation» at
. . nn
DocumentationAnnotation | 2NNO&€s|

‘ docu: String

@ «Concept» @ «Concept»
@ «Annotation» o Person Address
' annotates
OrgRoleAnnotation partition = false [®— partition = false
‘ role: String name: String street: String
age: Integer zZipcode: String
Figure 1. Language
«Person» «Address»
@ Alice @CompanyAddress

name = "Alison"
age = 23

street = "main st."
zipcode = "3212"

@«OrgRoIeAnnotation» @«OrgRoleAnnotation» @«DocumentationAnnotation» @ «DocumentationAnnotation»
AliceRolel AliceRole2 AliceDocu CompanyAddrDocu
‘ role = "CEQ" ‘ ‘ role = "Founder" ‘ ‘ docu = "Loves dogs" ‘ ‘ docu = "The place where work happens" ‘
Figure 2. Valid instance
«Person» @ «Address»
Alice CompanyAddress
Lg
name = "Alison" street = "main st."
age = 23 zipcode ="3212"

«OrgRoleAnnotation»

AliceDocul CompanyRole

@«DocumentationAnnotation»

role = "invalid because

role = "Loves dogs" .
‘ g OrgRoleAnnotation.annotates!=Address"

Figure 3. Invalid instance

3.1.4. Interface

[15]

An Interface” " represents a category of entities sharing some similar characteristics.

Example

For example, Named would be an Interface.

EMF & MPS equivalent

An Interface in LionWeb will be roughly equivalent to an EClass (with the isInterface flag set to
true) or an MPS’s ConceptInterfaceDeclaration.

Characteristics

An Interface has a name and an key.

An Interface is an Classifier (as it has features). It is indirectly a LanguageEntity (as it is a top level
element in a Language), an INamed (as it has a name), a IKeyed (as it has a key).

Each Interface extends zero or more Interfaces.
An Interface can have any number of features, given it is a Classifier.

Constraints

3.1.5. PrimitiveType
This represents an arbitrary primitive value, which is not an Enumeration.

Example

BooleanType, NumberType, and StringType are common PrimitiveTypes.

EMF & MPS equivalent

A PrimitiveType is similar to Ecore’s EDataType and to MPS’ PrimitiveDataTypeDeclaration.

Differently from ECore’s EDataType PrimitiveType has no flag serializable, and it does not inherit
fields such as instanceClassName, instanceClass, or defaultValue.

Characteristics

A PrimitiveType has a name and an key.

A PrimitiveType is a DataType (as it can be used as type of a Property). It is indirectly a
LanguageEntity (as it is a top level element in a Language), an INamed (as it has a name) and a
[Keyed (as it has a key).

The correspondence between a PrimitiveType an implementation class on a specific platforms can
be specified through annotations, but it is not specified on the PrimitiveType itself.

Constraints

TBD

3.1.6. Enumeration

A primitive value with finite, pre-defined, known set of possible values.

Example

DaysOfWeek or PlayingCardSuit are common Enumerations.

EMF & MPS equivalent

An Enumeration is similar to Ecore’s EEnum and to MPS’ EnumerationDeclaration.

Differently from ECore’s EEnum Enumeration has no flag serializable, and it does not inherit fields
such as instanceClassName, instanceClass, or defaultValue.

Characteristics

An Enumeration has a name and an key.

An Enumeration contains EnumerationLiterals in its literals containment. It also represents the
namespace for the EnumerationLiterals.

An Enumeration is a DataType (as it can be used as type of a Property). It is indirectly a
LanguageEntity (as it is a top level element in a Language), an INamed (as it has a name) and a
[Keyed (as it has a key).

Constraints

TBD

3.1.7. EnumerationLiteral

One of the possible values of an Enumeration.

Example

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday are all EnumerationLiterals of
the DaysOfWeek Enumeration.

EMF & MPS equivalent

An EnumerationLiteral is similar to Ecore’s EEnumLiteral and to MPS’ EnumerationMemberDeclaration.

Characteristics

An EnumerationLiteral has a name and an key.
An Enumeration is a IKeyed (as it has a key) and indirectly an INamed (as it has a name).

Constraints

Each EnumerationLiteral must have a unique name within the Enumeration.

Each EnumerationLiteral belongs to one and only one Enumeration.

3.1.8. Containment
Represents a relation between a containing Classifier and a contained Classifier.

Example

Between an IfStatement and its condition there is a Containment relation.

EMF & MPS equivalent

A Containment is similar to an ECore’s EReference with the containment flag set to true. Differently
from an EReference there is no container flag and resolveProxies flag.

A Containment is similar to an MPS’s LinkDeclaration with metaClass having value aggregation.
Differently from a LinkDeclaration there is no field unordered.

Characteristics

A Containment has a name and an key. It can be marked as optional and multiple.
A Containment refers its type, which is a Classifier.

A Containment is a Link (as it describes a relation between two Classifiers). It is indirectly a Feature
(as it describes the characteristics of a Classifier), an INamed (as it has a name) and a IKeyed (as it
has a key).

Constraints

TBD

3.1.9. Reference

Represents a relation between a referring Classifier and referred Classifier.

Example

VariableReference may have a Reference to a VariableDeclaration.

EMF & MPS equivalent

A Reference is similar to an ECore’s EReference with the containment flag set to false. Differently
from an EReference there is no container flag and resolveProxies flag.

A Reference is similar to an MPS’s LinkDeclaration with metaClass having value reference.
Differently from a LinkDeclaration there is no field unordered.

Characteristics

A Reference has a name and an key. It can be marked as optional and multiple.
A Containment refers its type, which is a Classifier.

A Reference is a Link (as it describes a relation between two Classifiers). It is indirectly a Feature (as
it describes the characteristics of a Classifier), an INamed (as it has a name) and a IKeyed (as it has a
key).

Constraints

TBD

3.1.10. Property
This indicates a simple value associated to an entity.

Example

For example, an Invoice could have a date or an amount.

EMF & MPS equivalent

10

A Property is similar to Ecore’s EAttribute.
A Property is similar to MPS’s AttributeDeclaration.

Characteristics

A Property has a name and an key. It can be marked as optional.
A Property refers its type, which is a DataType.

A Property is a Feature (as it describes the characteristics of a Classifier). It is indirectly a IKeyed (as
it has a key) and an INamed (as it has a name).

Constraints

TBD

3.2. Abstract concepts

The abstract concepts are LanguageEntity, Classifier, DataType, Feature, and Link.

3.2.1. LanguageEntity
A LanguageEntity is an entity with an identity directly contained in a Language.

Example

For example, Invoice, Currency, Named, or String could be LanguageEntities.

EMF & MPS equivalent

LanguageEntity is similar to Ecore’s EClassifier.

LanguageEntity is similar to MPS’ IStructureElement. The difference is that IStructureElement
includes also elements that cannot appear as top level elements of a structure aspects, such as
LinkDeclaration, PropertyDeclaration, and EnumerationMemberDeclaration.

Characteristics

A LanguageEntity has a name and an key.
A LanguageEntity is a IKeyed (as it has a key), and indirectly an INamed (as it has a name).
A LanguageEntity can be one of:

¢ Annotation
* Concept
e Interface

 Enumeration

PrimitiveType

Constraints

Each LanguageEntity must have a unique name within the Language.

11

Each LanguageEntity belongs to one and only one Language.

3.2.2. Classifier
[16]

Something which can own Features.

Example

A Concept can have several features.

EMF & MPS equivalent

Classifier is similar to EClass in Ecore (which is used both for classes and interfaces) and to
AbstractConceptDeclaration in MPS.

Characteristics

A Classifier has a name and an key.

It also represents the namespace for Features.

A Classifier owns any number of Features in features containment.
A Classifier can be one of:

* Annotation
* Concept

e Interface

A Classifier is a LanguageEntity (as it is a top level element in a Language). It is indirectly a IKeyed
(as it has a key) and an INamed (as it has a name).

Constraints

TBD

3.2.3. DataType
A type of value which has no relevant identity in the context of a model.

Example

A Currency or a Date type.

EMF & MPS equivalent

It is similar to Ecore’s EDataType.
It is similar to MPS’ DataTypeDeclaration.

Characteristics

A DataType has a name and an key.

A DataType is a LanguageEntity (as it is a top level element in a Language). It is indirectly a IKeyed
(as it has a key) and an INamed (as it has a name).

12

A DataType can be one of:

* PrimitiveType

* Enumeration
Constraints
TBD
3.2.4. Feature
A Feature represents a characteristic or some form of data associated with a particular concept.

Example

For example, an Invoice can have an associated date, a number, a connection with a customer, and it
can contain InvoiceLines. All of this information is represented by features.

EMF & MPS equivalent

A Feature in LionWeb will be roughly equivalent to an EStructuralFeature or to the combination of
Properties and Links (both containment and reference links) in MPS.

Differently from Ecore’s EStructureFeature, Features do not have flags such as changeable, volatile,
transient, or unsettable. They have no default value.

Different from MPS' Link, Features CANNOT be specialized."”

Characteristics

A Feature has a name and an key.

A Feature can be set to optional or required.

A Feature is a IKeyed (as it has a key) and indirectly an INamed (as it has a name).
A Feature can either be one of:

* Property
¢ Containment

e Reference

Constraints

Each Feature MUST have a unique name within a specific Classifier, including all (directly or
indirectly) inherited Features.""

We CAN have non-unique inherited feature names, as in this example:

13

© A ©s

id =123 id=12
key = MyLang-A key = MyLang-B
f: string id=332, key=A-f f: integer id=27, key=B-f

N/

© x

id=79
key = MyLang-X

However, within LionWeb we always use a Feature’s id or key to for identification. Thus, LionWeb
can deal with the name clash.

If a host language cannot handle this situation, the generator towards that language needs to
resolve it."”!

3.2.5. Link
Represent a connection to an Classifier.

Example

An Invoice can be connected to its InvoiceLines and to a Customer.

EMF & MPS equivalent

It is similar to Ecore’s EReference.
It is similar to MPS’ LinkDeclaration.

Characteristics

A Link has a name and an key. It can be marked as optional.
A Link can have multiple or only a single targets.
A Link refers its type, which is a Classifier.

A Link is a Feature (as it describes the characteristics of a Classifier). It is indirectly a IKeyed (as it
has a key) and an INamed (as it has a name).

A Link can be either a Containment, or a Reference.
[17]

We do NOT support link specialization.

Constraints

TBD

14

3.3. Interfaces

The interfaces are IKeyed.

3.3.1. IKeyed

Something with a name that has a key.”"”

Example

A Concept Invoice, contained in a Language com. foo.Accounting.

EMF & MPS equivalent

n/a

Characteristics

An IKeyed has a name and an key."”
A IKeyed is an INamed (as it has a name).
All elements of the Meta-Metamodel realize IKeyed.

Constraints

A IKeyed’s name MUST be unique within the namespace (i.e. Language, Classifier, or Enumeration).

The name MUST be a valid programming language identifier"".,

More specifically, we allow Java identifiers with the following modifications:

» We do NOT allow §$ (dollar sign)

* ReservedKeyword, BooleanLiteral, and NullLiteral (as per Java identifier spec) are allowed
identifiers.

Effectively:

e Names MUST NOT start with a number.
* Names MUST NOT be empty.

* Names MUST NOT contain spaces.

Names CAN use Unicode characters, numbers, and underscore.
These restrictions only apply to names of Language elements (i.e. M3 concepts/M2
NOTE instances). Any language that uses INamed on its own can establish their own

constraints.

Refer to Keys for more constraints.

3.4. Pre-defined keys and ids

15

https://docs.oracle.com/javase/specs/jls/se20/html/jls-3.html#jls-3.8

3.4.1. Keys of M3 elements

The language itself has key LionCore-M

M3 element
Annotation
Annotation.annotates

Annotation.extends

Annotation.implements

Concept
Concept.abstract
Concept.extends
Concept.implements
Interface
Interface.extends
Containment
DataType
Enumeration
Enumeration.literals
EnumerationLiteral
Feature
Feature.optional
Classifier
Classifier.features
Link

Link.multiple
Link.type

Language
Language.dependsOn
Language.entities
Language.version
LanguageEntity
IKeyed

IKeyed.key
PrimitiveType

Property

16

3[22]

Concept
Concept
Reference
Reference
Reference
Concept
Property
Reference
Reference
Concept
Reference
Concept
Concept
Concept
Containment
Concept
Concept
Property
Concept
Containment
Concept
Property
Reference
Concept
Reference
Containment
Property
Concept
Interface
Property
Concept

Concept

and is named LionCore_M

3[23]

Key

Annotation
Annotation-annotates
Annotation-extends
Annotation-implements
Concept
Concept-abstract
Concept-extends
Concept-implements
Interface
Interface-extends
Containment
DataType
Enumeration
Enumeration-literals
EnumerationLiteral
Feature
Feature-optional
Classifier
Classifier-features
Link

Link-multiple
Link-type

Lanquage
Language-dependsOn
Language-entities
Language-version
LanguageEntity
IKeyed

IKeyed-key
PrimitiveType

Property

M3 element Concept Key
Property.type Reference Property-type

Reference Concept Reference

3.4.2. Ids of built-in elements

The language hosting built-in elements has id and key LionCore-builtins“”, its name is

LionCore_builtins™.

Every language implicitly depend on this language.” Thus, the ids in this language MUST be stable.
This means the id MUST be identical to the key for each node in this language.

Instance Concept Id and key

String PrimitiveType LionCore-builtins-String
Boolean PrimitiveType LionCore-builtins-Boolean
Integer PrimitiveType LionCore-builtins-Integer
JSON PrimitiveType LionCore-builtins-JSON

Node Concept LionCore-builtins-Node
INamed Interface LionCore-builtins-INamed
INamed.name Property LionCore-builtins-INamed-name

3.5. Built-in elements

Each LionWeb implementation ships with a set of built-in elements, akin to a standard library.””

These elements are part of the M2 language LionCore_builtins. It can be used in any user-defined
Language.”™

B ; «Interface»
«Concept»
INamed
Node
name: String
@«PrimitiveType» @«PrimitiveType» «PrimitiveType» @«PrimitiveType»
String Integer Boolean JSON

3.5.1. Concepts

« Node™, an abstract Concept that’s the (explicit or implicit) the ancestor of all concepts.

17

3.5.2. Interfaces

d[28]

» INamed™™, an Interface with one Property called name of type String.

If a Reference.type targets a Classifier that implements INamed, implementations SHOULD use
the target’s name property as default resolveInfo value.

3.5.3. Primitive types

Some primitive types will be widely used, so it makes sense to pre-define them.”

* Boolean with exactly two values: true and false (Details)
» String, an arbitrary-length series of Unicode characters (Details)
» Integer, an arbitrary-length positive or negative integer number (Details)

» JSON, any valid JSON document (Details)

3.6. Supporting terminology

3.6.1. Multiplicity
Multiplicity describes how many targets a link must and can have.

Example

Common multiplicities are 1 (meaning there MUST be exactly one target), 0..1 (meaning there CAN
be exactly one target), 0..* (meaning there CAN be zero or more targets), and 1..* (meaning there
MUST be at least one target, but there CAN be more than one targets).

EMF & MPS equivalent

In Ecore there is no equivalent as lowerBound and upperBound can be set independently.
This is equivalent to MPS’ Cardinality, which has the four values mentioned as example.

Characteristics

LionCore represents multiplicity as the two booleans optional (whether there MUST be at least one
target) and multiple (whether there CAN be more than one target).

Multiplicity optional multiple

1 true false
0..1 false false
0..” true true
1..% false true
Constraints
TBD

18

../serialization/serialization.pdf#Reference.reference.resolveInfo
../serialization/serialization.pdf#boolean
../serialization/serialization.pdf#string
../serialization/serialization.pdf#integer
../serialization/serialization.pdf#json

3.6.2. Partitions

Each node that does not have a parent node MUST be of a Concept with partition flag set to true.
This implies that every node is contained in exactly one partition, namely the partition defined by
its root node."" Partitions CANNOT be nested.

EMF & MPS equivalent

A partition is similar to ECore’s Resource.

A partition is similar to MPS' model.

3.6.3. Identifiers

Valid characters

Ids can only contain these symbols:

* lowercase latin characters: a..z
* uppercase latin characters: A..Z
* arabic numerals: 0..9

e underscore: _

* hyphen: -

This is the same character set as Base64url variant.

Representation

Ids are represented by a string, containing only valid characters (as defined above). An id string is
NOT padded, also not by whitespaces. An id string does NOT contain any terminating symbols
(compared to some BASE64 variants); this does not affect internal representation in a specific
implementation language, e.g. C-style \O-terminated strings.

Scope
Node ids MUST be unique within their id-space.
Id-space

An id-space is a realm that guarantees the uniqueness of all ids within. Typically, this means one
repository.

An id-space has an id as defined above. Uniqueness of id-space ids is out of scope of LionWeb
specification.

In LionWeb (the protocol), id-spaces are NOT hierarchical. An implementation might choose to use
hierarchical id-spaces internally.

19

https://en.wikipedia.org/wiki/Base64#Variants_summary_table

Identification

A node can be identified relative to its id-space by the node’s id. To globally identify a node, we use
the combination of the id-space id and the node id.

3.6.4. Keys

We use keys when we refer from instance level to meta level."” Refer to References to language
elements for a list of all usages.

Keys are modeled via [Keyed.key. Keys MUST be valid Identifiers.

A key SHOULD be globally unique, and MUST be unique within an Id-space, i.e. the Language.”” For
approximate global uniqueness, we SHOULD adopt Java’s package naming scheme, based on
domain names. As we don’t allow dots (.) in ids, we SHOULD use dashes (-) instead.

3.6.5. Namespaces
A Namespace implements INamed and can have descendants that implement INamed.

Typically, a namespace enforces some constraints on the contained names, like uniqueness within
the same namespace, or what’s considered a valid name.

We can calculate a fully qualified name by concatenating the namespaces of all the ancestors up to
the top level ancestor. Future versions might support this directly.”"

4. Other considerations

4.1. Reflection

Reflection describes the ability of each Meta-Metamodel instance to access the definition of the
Meta-Metamodel element from which it has been instantiated.

It is important to offer this functionality also in consideration that some implementation languages
may not offer reflection capabilities that could be used as an alternative.

4.2. Generics

Generics are not directly supported by this proposal. We can solve some needs through
specialization of features in derived classes. We could alternatively also imagine using specific
annotations for supporting this.

In general Generics complicate the solution and MPS can live without them. Also, in StarLasu we
never encountered the need for them so far.

4.3. References to language elements

[9]

From a language, we refer to all language elements by their id.”” This includes references to

20

» other languages

» extended Concepts

» extended or implemented Interfaces
 Types of Properties or Links

As built-ins is just another language, we refer to its members by their id, just as any other language
members.

From an instance, we refer to its defining language element by the language element’s Keys"” This
includes references to

* Language usage

* Annotation or Concept instance

* Property assignment

* Containment assignment

* Reference assignment

 EnumerationLiteral value

4.4. Union or intersection types

These are not supported.

4.5. Operations

Operations are not represented in the Meta-Metamodel.

5. Reference models

5.1. Meta-meta model

The LionCore model, aka LionWeb M3. It is defined by means of itself, as outlined by Meta-Object
Facility.

"serijalizationFormatVersion": "2023.1",
"languages": [
{
"key": "LionCore-M3",
"version": "2023.1"
}
1,
"nodes": [

{

"id": "-id-LionCore-M3",

21

lioncore.json
https://en.wikipedia.org/wiki/Meta-Object_Facility
https://en.wikipedia.org/wiki/Meta-Object_Facility

22

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language"

Ifs
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "LionCore_M3"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language-version"
3
"value": "1"
3
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "LionCore-M3"
¥
1
"containments": [
{

"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language-entities"

b

"children": [
"-jid-Annotation",
"-id-Concept",
"-id-Interface",
"-id-Containment",
"-id-DataType",
"-id-Enumeration",
"-id-EnumerationlLiteral”,
"-id-Feature",
"-id-Classifier",
"-id-Link",
"-id-Language",
"-id-LanguageEntity",

}I
{

"-id-IKeyed",
"-id-PrimitiveType",
"-id-Property",
"-id-Reference"

]
¥
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language-dependsOn"
¥
"targets": []
}
1,

"annotations": [],
"parent": null

"id": "-id-Annotation”,
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
}
"value": "false"
Jfo
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
}
"value": "false"
3
{

"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
y

"value": "Annotation"

23

24

1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
Ji
"value": "Annotation"
¥
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

i
"children": [
"-id-Annotation-annotates",
"-id-Annotation-extends",
"-id-Annotation-implements"
]
}
1,
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
b
"targets": [
{
"resolvelnfo": "Classifier",
"reference": "-id-Classifier"
}
]
b
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
s
"targets": []
}
1
"annotations": [],
"parent": "-id-LionCore-M3"
Iy
{

"id": "-id-Annotation-annotates",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"
Iy
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
T
"value": "false"
k.
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
¥
"value": "true"
1
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "annotates"
i
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "Annotation-annotates"
¥
1

ontainments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
}
"targets": [
{

"resolveInfo": "Classifier",

25

26

}I
{

"reference": "-id-Classifier"
}
1
}
1,
"annotations": [],
"parent": "-id-Annotation"

"id": "-id-Annotation-extends",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"
I
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
Vs
"value": "false"
}
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
s
"value": "true"
s
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "extends"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
i
"value": "Annotation-extends"
}
1
"containments": [],
"references": [

}I
{

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

s
"targets": [
{
"resolveInfo": "Annotation",
"reference": "-id-Annotation"
}
]
}
1.
"annotations": [],
"parent": "-id-Annotation”
"id": "-id-Annotation-implements",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"

e
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
Ji
"value": "true"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
T
"value": "true"
+
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
0
"value": "implements"
1
{
"property": {

27

28

"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
fs
"value": "Annotation-implements"
}
1.
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
s
"targets": [
{
"resolvelnfo": "Interface",
"reference": "-id-Interface"

]
}
1
"annotations": [],
"parent": "-id-Annotation"
Iy
{
"id": "-id-Concept",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

I,
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
b
"value": "false"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
H
"value": "false"
Iy
{

"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
brs
"value": "Concept"
I
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "Concept"
}
15
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
0
"children": [
"-id-Concept-abstract",
"-id-Concept-partition",
"-id-Concept-extends",
"-id-Concept-implements"
]
}
I
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
y
"targets": [
{
"resolveInfo": "Classifier",
"reference": "-id-Classifier"

1
¥
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"

}I

29

30

}I
{

"targets": []

¥
1.
"annotations": [],
"parent": "-id-LionCore-M3"

"id": "-id-Concept-abstract",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
I
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
s
"value": "false"
s
{
"property": {
“language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
fs
"value": "abstract"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
}
"value": "Concept-abstract"
}
1
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"
s
"targets": [
{
"resolvelnfo": "Boolean",
"reference": "LionCore-builtins-Boolean"

}I
{

}
]
}
]

nnotations": [],
"parent": "-id-Concept"

"id": "-id-Concept-extends",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"
b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
¥
"value": "false"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
b
"value": "true"
i
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
T
"value": "extends"
k.
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "Concept-extends"
}
1
"containments": [],
"references": [

{

31

32

}I
{

"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

b
"targets": [
{
"resolveInfo": "Concept",
"reference": "-id-Concept"
}
1
¥
1,
"annotations": [],
"parent": "-id-Concept"
"id": "-id-Concept-implements”,

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"

Iy
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
I
"value": "true"
T
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
¥
"value": "true"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "implements"
Jfo
{
"property": {

"language": "LionCore-M3",

}I
{

"version": "2023.1",
"key": "IKeyed-key"
s
"value": "Concept-implements"
}
1
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
b
"targets": [
{
"resolveInfo": "Interface",
"reference": "-id-Interface"

]
}
]I

"annotations": [],
"parent": "-id-Concept"

"id": "-id-Concept-partition”,
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"

},
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
T
"value": "false"
+
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
0
"value": "partition"
1
{
"property": {

33

34

}I
{

"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "Concept-partition"
¥
1
"containments": [],
"references": [

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"
s
"targets": [
{
"resolveInfo": "Boolean",
"reference": "LionCore-builtins-Boolean"
}
]
}
1
"annotations": [],
"parent": "-id-Concept"
"id": "-id-Interface",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

I,
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
b
"value": "false"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
H
"value": "false"
Iy
{

"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
brs
"value": "Interface"
i
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "Interface"
¥
1,
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

s
"children": [
"-id-Interface-extends"
]
}
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
s
"targets": [
{
"resolveInfo": "Classifier",
"reference": "-id-Classifier"
}
]
b
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements”
}
"targets": []
}
1

35

36

"annotations": [],
"parent": "-id-LionCore-M3"
)
{

"id": "-id-Interface-extends",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"

}
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
b
"value": "true"
i
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
T
"value": "true"
k.
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "extends"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
b
"value": "Interface-extends"
}
1.

"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

}I
{

}I

"targets": [
{
"resolveInfo": "Interface",
"reference": "-id-Interface"
}
]
}
1.
"annotations": [],
"parent": "-id-Interface"
"id": "-id-Containment",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
H
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
y
"value": "false"
iy
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
¥
"value": "false"
Ifs
{
"property": {
“language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
I
"value": "Containment"
T
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
y

"value": "Containment"

37

38

}
]

ontainments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

b
"children": []
}
.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
b
"targets": [
{
"resolveInfo": "Link",
"reference": "-id-Link"
}
]
b
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
s
"targets": []
}
1
"annotations": [],
"parent": "-id-LionCore-M3"
Iy
{

"id": "-id-DataType",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

}

roperties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"

s
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
b
"value": "false"
b
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
i
"value": "DataType"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
I
"value": "DataType"
}
1.
"containments": [
{

"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

0
"children": []
¥
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
¥
"targets": [
{
"resolveInfo": "LanguageEntity",
“reference": "-id-LanguageEntity"
}
1

39

40

}I
{

}
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements”
Ji
"targets": []
¥
1
"annotations": [],
"parent": "-id-LionCore-M3"

"id": "-id-Enumeration",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

I
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
s
"value": "false"
+
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
s
"value": "false"
b
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "Enumeration"
b
{
"property": {

"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"

3

"value": "Enumeration"
}
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

i
"children": [
"-id-Enumeration-literals"
]
}
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
Vs
"targets": [
{
"resolveInfo": "DataType",
"reference": "-id-DataType"
}
]
o
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
s
"targets": []
}
1
"annotations": [],
"parent": "-id-LionCore-M3"
fer
{
"id": "-id-Enumeration-literals",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Containment"
H
"properties": [
{
"property": {

41

42

]I

"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
¥
"value": "true"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
b
"value": "true"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
I
"value": "literals"
k.
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥

"value": "Enumeration-literals"

}

"containments": [],
"references": [

]I

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
s
"targets": [
{
"resolveInfo": "EnumerationLiteral”,
"reference": "-id-EnumerationLiteral”

]
}

"annotations": [],
"parent": "-id-Enumeration"

}I
{

"id": "-id-EnumerationLiteral"”,
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
Iy
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
T
"value": "false"
k.
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
¥
"value": "false"
1
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "EnumerationLiteral”
i
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "EnumerationLiteral”
¥
1

ontainments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
s
"children": []
}
1.

"references": [

43

44

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
I
"targets": []
T
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"

b
"targets": [
{
"resolvelInfo": "IKeyed",
"reference": "-id-IKeyed"
}
]
}
1
"annotations": [],
"parent": "-id-LionCore-M3"
I
{
"id": "-id-Feature",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

},
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
T
"value": "true"
s
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
0
"value": "false"
1
{
"property": {

"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
fs
"value": "Feature"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
+
"value": "Feature"
}
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

¥
"children": [
"-id-Feature-optional”
1
}
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
¥
"targets": []
Ifs
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
I
"targets": [
{
"resolveInfo": "IKeyed",
"reference": "-id-IKeyed"
}
]
}
1,

"annotations": [],

46

"parent": "-id-LionCore-M3"
I
{
"id": "-id-Feature-optional",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
}

roperties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional"
b
"value": "false"
1
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
H
"value": "optional"
Iy
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
I
"value": "Feature-optional”
}
1

"containments": [],
"references": [

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"
b
"targets": [
{
"resolveInfo": "Boolean",
"reference": "LionCore-builtins-Boolean"
}
]
}
1

}I
{

"annotations": [],
"parent": "-id-Feature"

"id": "-id-Classifier",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
},
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
5
"value": "true"
i
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
3
"value": "false"
3
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "Classifier"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "(Classifier"
}
1,
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

}I

47

48

"children": [
"-id-Classifier-features"

1
}
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
¥
"targets": [
{
"resolvelnfo": "LanguageEntity",
"reference": "-id-LanguageEntity"
}
1
i
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
T
"targets": []
¥
1,
"annotations": [],
"parent": "-id-LionCore-M3"
his
{
"id": "-id-Classifier-features",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Containment"

I,
"properties": [
{

"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"

b

"value": "true"

b
{
"property": {

"language": "LionCore-M3",
"version": "2023.1",

"key": "Feature-optional”
b
"value": "true"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "features"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
I
"value": "Classifier-features"
¥
]

ontainments": [1,
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
i
"targets": [
{
"resolvelnfo": "Feature",
"reference": "-id-Feature"

1
}
1,
"annotations": [],
"parent": "-id-Classifier"
1
{
"id": "-id-Link",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
Iy
"properties": [
{
"property": {
"language": "LionCore-M3",

49

50

"version": "2023.1",
"key": "Concept-abstract”

s
"value": "true"
+
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
s
"value": "false"
b
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
g
"value": "Link"
by
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
s
"value": "Link"
}
1
"containments": [
{

"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

I
"children": [
"-id-Link-multiple",
"-id-Link-type"
]
}
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
b
"targets": [

}I
{

{

"resolveInfo": "Feature",

“reference": "-id-Feature"
}
]
1
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
b
"targets": []
¥
1.
"annotations": [],
"parent": "-id-LionCore-M3"

"id": "-id-Link-multiple",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
3
"value": "false"
3
{
"property": {
“language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "multiple"
}
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
o
"value": "Link-multiple"
¥
1

31

32

}I
{

"containments": [],
"references": [

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"
s
"targets": [
{
"resolvelnfo": "Boolean",
"reference": "LionCore-builtins-Boolean"
}
]
}
1.

"annotations": [],
"parent": "-id-Link"

"id": "-id-Link-type",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"

b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
¥
"value": "false"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
b
"value": "false"
i
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
T
"value": "type"
k.

{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
s
"value": "Link-type"
}
1,
"containments": [1,
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"
i
"targets": [
{
"resolvelnfo": "Classifier",
"reference": "-id-Classifier"

1
}
1,
"annotations": [],
"parent": "-id-Link"
1
{
"id": "-id-Lanquage",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
}
"value": "false"
3
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
¥

"value": "true"

54

1
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
Ji
"value": "Language"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "Language"
¥
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
T
"children": [
"-id-Language-version",
"-id-Language-dependsOn",
"-id-Language-entities"
1
}
1.
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
T
"targets": []
+
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
0
"targets": [
{
"resolveInfo": "IKeyed",
"reference": "-id-IKeyed"

}I
{

}
]
}
]

nnotations": [],
"parent": "-id-LionCore-M3"

"id": "-id-Lanquage-dependsOn",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"

b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
¥
"value": "true"
¥
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
b
"value": "true"
i
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
3
"value": "dependsOn"
3
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "Language-dependsOn"
}
1

"containments": [],
"references": [

{

55

36

}I
{

"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

5
"targets": [
{
"resolvelnfo": "Language",
"reference": "-id-Language"
}
1
¥
1,
"annotations": [],
"parent": "-id-Language"
"id": "-id-Lanquage-entities",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Containment"

Iy
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
I
"value": "true"
T
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
¥
"value": "true"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
Vs
"value": "entities"
Jfo
{
"property": {

"language": "LionCore-M3",

"version": "2023.1",
"key": "IKeyed-key"
T
"value": "Language-entities"
¥
1
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

¥
"targets": [
{
“resolvelnfo": "LanguageEntity",
"reference": "-id-LanguageEntity"
by
1
¥
1
"annotations": [],
"parent": "-id-Language"
b
{
"id": "-id-Language-version",

"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
},
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
T
"value": "false"
+
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
0
"value": "version"
1
{
"property": {

38

}I
{

"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "Language-version"
¥
1
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"
3
"targets": [
{
"resolvelInfo": "String",
“reference": "LionCore-builtins-String"
}
1
¥
1,
"annotations": [],
"parent": "-id-Language"

"id": "-id-LanguageEntity",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

I,
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract"
b
"value": "true"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
H
"value": "false"
Iy
{

"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
5

"value": "LanguageEntity"

I
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
T
"value": "LanguageEntity"
}
15
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
0
"children": []
}
1,
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
Iy
"targets": []
1
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
brs
"targets": [
{
"resolvelInfo": "IKeyed",
"reference": "-id-IKeyed"
}
1
}
1,
"annotations": [],
"parent": "-id-LionCore-M3"

39

"id": "-id-IKeyed",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Interface"

b
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
3
"value": "IKeyed"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
}
"value": "IKeyed"
¥
1.
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
¥
"children": [
"-id-IKeyed-key"
1
¥
1.
"references": [
{

"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Interface-extends"

b
"targets": [
{
"resolveInfo": "INamed",
"reference": "LionCore-builtins-INamed"
}

]

}
]

nnotations": [],
"parent": "-id-LionCore-M3"
Ifs
{
"id": "-id-IKeyed-key",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
Jis
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
Ji
"value": "false"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
T
"value": "key"
+
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
0
"value": "IKeyed-key"
¥
]

ontainments": [1,
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property-type"

¥
"targets": [
{
"resolvelnfo": "String",
"reference": "LionCore-builtins-String"
¥

61

62

]
}
1
"annotations": [],
"parent": "-id-IKeyed"
Jr
{
"id": "-id-PrimitiveType",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
I
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
s
"value": "false"
s
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
fs
"value": "false"
b
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
}
"value": "PrimitiveType"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
s
"value": "PrimitiveType"
}
1
"containments": [
{
"containment": {
"language": "LionCore-M3",

"version": "2023.1",
"key": "Classifier-features"

T
"children": []
¥
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
T
"targets": [
{
"resolveInfo": "DataType",
"reference": "-id-DataType"
}
1
T
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
¥
"targets": []
}
1
"annotations": [],
"parent": "-id-LionCore-M3"
)
{

"id": "-id-Property",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
¥
"value": "false"
Jfo
{
"property": {

"language": "LionCore-M3",

63

64

"version": "2023.1",
"key": "Concept-partition”
T
"value": "false"
s
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "Property"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
Ji
"value": "Property"
¥
1P
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

i
"children": [
"-id-Property-type"
]
}
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
i
"targets": [
{
"resolvelnfo": "Feature",
"reference": "-id-Feature"
+
]
}
{

"reference": {
"language": "LionCore-M3",

}I
{

"version": "2023.1",
"key": "Concept-implements"

s
"targets": []
}
1
"annotations": [],
"parent": "-id-LionCore-M3"

"id": "-id-Property-type",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Reference"
b
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-multiple"
0
"value": "false"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
Ji
"value": "false"
¥
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
T
"value": "type"
s
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
0
"value": "Property-type"
¥
1.

"containments": [1,

65

66

}I
{

"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Link-type"

Ji
"targets": [
{
"resolveInfo": "DataType",
"reference": "-id-DataType"
}
1

¥
1
"annotations": [],
"parent": "-id-Property"

"id": "-id-Reference",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"

¥
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
I
"value": "false"
k.
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
¥
"value": "false"
1
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
o
"value": "Reference"
¥
{

"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"

+
"value": "Reference"
}
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
s
"children": []
}
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
I
"targets": [
{
"resolveInfo": "Link",
"reference": "-id-Link"
}
]
s
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
b
"targets": []
}
1,

"annotations": [],
"parent": "-id-LionCore-M3"

5.2. Pre-defined elements

The LionCore built-in elements.

{
"serializationFormatVersion": "2023.1",
"languages": [
{
"key": "LionCore-M3",
"version": "2023.1"
}
P
"nodes": [
{

"id": "LionCore-builtins",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language"

},
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "LionCore _builtins"
},
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language-version"
I
"value": "1"
},
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
¥
"value": "LionCore-builtins"
}
1
"containments": [
{

"containment": {
"language": "LionCore-M3",

68

builtins.json

}I
{

"version": "2023.1",
"key": "Language-entities"
s
"children": [
"LionCore-builtins-String",
"LionCore-builtins-Boolean",
"LionCore-builtins-Integer",
"LionCore-builtins-JSON",
"LionCore-builtins-Node",
"LionCore-builtins-INamed"
]
+
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Language-dependsOn"
s
"targets": []
}
1
"annotations": [],
"parent": null

"id": "LionCore-builtins-String",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "PrimitiveType"

b
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
¥
"value": "String"
}
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
o
"value": "LionCore-builtins-String"
¥
1

69

70

}I
{

"containments": [],
"references": [],
"annotations": [],

"parent": "LionCore-builtins"

"id": "LionCore-builtins-Boolean",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "PrimitiveType"
I
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "Boolean"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
s
"value": "LionCore-builtins-Boolean"
}
1
"containments": [],
"references": [1],
"annotations": [],
"parent": "LionCore-builtins"

"id": "LionCore-builtins-Integer",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "PrimitiveType"

b
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
3
"value": "Integer"
3

{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
I
"value": "LionCore-builtins-Integer"
¥
1.
"containments": [],
"references": [1,
"annotations": [],
"parent": "LionCore-builtins"

"id": "LionCore-builtins-JSON",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "PrimitiveType"
I,
"properties": [
{
"property": {
“language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
b
"value": "JSON"
I
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
H
"value": "LionCore-builtins-JSON"
}
1,
"containments": [],
"references": [],
"annotations": [],
"parent": "LionCore-builtins"
lis
{
"id": "LionCore-builtins-Node",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept"
Ifs

71

72

"properties": [

{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-abstract”
I
"value": "true"
Iy
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-partition”
T
"value": "false"
s
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
0
"value": "Node"
1
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
I
"value": "LionCore-builtins-Node"
}
1P
"containments": [
{

"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"

i
"children": []
}
1
"references": [
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-extends"
s

"targets": []

Iy
{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Concept-implements"
s
"targets": []
}
1.

"annotations": [],
"parent": "LionCore-builtins"
Iy
{
"id": "LionCore-builtins-INamed",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Interface"
I
"properties": [
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
fs
"value": "INamed"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
}
"value": "LionCore-builtins-INamed"
}
1
"containments": [
{
"containment": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Classifier-features"
+
"children": [
"LionCore-builtins-INamed-name"
]
}
1

73

"references": [

{
"reference": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Interface-extends"
Ji
"targets": []
¥
1

"annotations": [],
"parent": "LionCore-builtins"
I
{
"id": "LionCore-builtins-INamed-name",
"classifier": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Property"
I
"properties": [
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "Feature-optional”
s
"value": "false"
+
{
"property": {
"language": "LionCore-builtins",
"version": "2023.1",
"key": "LionCore-builtins-INamed-name"
s
"value": "name"
b
{
"property": {
"language": "LionCore-M3",
"version": "2023.1",
"key": "IKeyed-key"
b
"value": "LionCore-builtins-INamed-name"
}
1,
"containments": [],
"references": [
{
"reference": {
"language": "LionCore-M3",

}
]
}

"version": "2023.1",
"key": "Property-type"

}
"targets": [
{
"resolvelnfo": "String",
“reference": "LionCore-builtins-String'
}
]
}

1
"annotations": [],
"parent": "LionCore-builtins-INamed"

6. Comparison with other meta-metamodels

Main difference: we aim for multiple implementations on different platforms, we want to serve
both textual and projectional languages and editors.

LionCore Ecore

Language EPackage
Annotation Adapter (M1) / EAnnotation (M2)
Concept EClass

Interface EClass
PrimitiveType EDataType
Enumeration EEnum
EnumerationLiteral EEnumlLiteral
Containment EReference
Reference EReference
Property EAttribute

IKeyed —

LanguageEntity EClassifier
Classifier EClass

DataType EDataType

Feature EStructuralFeature
Link EReference

MPS

Language’s structure aspect (docs, javadoc)
NodeAttribute (docs)

ConceptDeclaration (docs, javadoc)
InterfaceConceptDeclaration (docs, javadoc)
PrimitiveDataTypeDeclaration (javadoc)
EnumerationDeclaration (docs, javadoc)
EnumerationMemberLiteral (docs, javadoc)
LinkDeclaration (docs, javadoc)
LinkDeclaration (docs, javadoc)
PropertyDeclaration (docs, javadoc)
IStructureElement (javadoc)
AbstractConceptDeclaration (javadoc)
DataTypeDeclaration (javadoc)

(docs, javadoc)

LinkDeclaration (javadoc)

75

https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EPackage.html
https://www.jetbrains.com/help/mps/structure.html
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SLanguage.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/common/notify/Adapter.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EAnnotation.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590288%28jetbrains.mps.lang.core.structure%29%2F3364660638048049748
https://www.jetbrains.com/help/mps/structure.html#attributes
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EClass.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1071489090640
https://www.jetbrains.com/help/mps/structure.html#conceptsandconceptinterfaces
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SConcept.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EClass.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1169125989551
https://www.jetbrains.com/help/mps/structure.html#conceptsandconceptinterfaces
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SInterfaceConcept.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EDataType.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1083243159079
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SPrimitiveDataType.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EEnum.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F3348158742936976479
https://www.jetbrains.com/help/mps/structure.html#enumerationds
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SEnumeration.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EEnumLiteral.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F3348158742936976480
https://www.jetbrains.com/help/mps/structure.html#enumerationds
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SEnumerationLiteral.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1071489288298
https://www.jetbrains.com/help/mps/structure.html#children
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SContainmentLink.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1071489288298
https://www.jetbrains.com/help/mps/structure.html
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SReferenceLink.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EAttribute.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1071489288299
https://www.jetbrains.com/help/mps/structure.html#properties
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SProperty.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EClassifier.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1588368162880706270
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SElement.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EClass.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1169125787135
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SAbstractConcept.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EDataType.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1082978164218
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SDataType.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EStructuralFeature.html
https://www.jetbrains.com/help/mps/structure.html#conceptmembers
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SConceptFeature.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/EReference.html
http://127.0.0.1:63320/node?ref=r%3A00000000-0000-4000-0000-011c89590292%28jetbrains.mps.lang.structure.structure%29%2F1071489288298
https://alexanderpann.github.io/mps-openapi-doc/javadoc_2021.2/org/jetbrains/mps/openapi/language/SAbstractLink.html

6.1. Comparison with Ecore

javadoc

f EModeiEiement

[@..1] eModelElement

@ getEAnnctation(source EString) : EAnnotation

[0..*] eAnnotations

7
[

H Eannctation

| [1..1] eFactorylnstance

| ENamedElement |

= source : EString

2 details : EStringToStringhMapEntry
2 contents : EObject

=t references : EObject

| H EFactery

= name : EString

@ create(eClass EClass) | EObject
@ createFromStringeDataType EDataType, literaMalue EString) : EJavaObject
@ converfToString(eDataType EDataType, instanceValue EJavaObject) : EString

i

Eﬁ ETypedSiement

ordered | EBoolean = true
unique : EBoclean = true
lowerBound : Elnt

f Eciassifier

instanceClassMName : EString
finstanceClass : ElavaClass
Jdefaultvalue : EJavaObject

upperBound : Elnt =1

/many : EBoolean = false
Jrequired : EBoolean = false

= eGenericType : EGenericType

7

oooDoaoao

[}
=}
[0..1] eType o=
[=}

instanceTypeMName : EString

& getClassifierlD{) : Elnt

@ izlnstance(object EJavaObject) : EBoolean [}

3 eTypeParameters : ETypeParameter

[1..1] ePackage
[EPackage
= nsURI : EString
= nsPrefix : EString [

@ getEClassifier(name EString) : EClassifier

L1

E Eoperation

| 101

E EParameter

T [0..1] eSuperPackage [0.*] eSubpackages

[0.."] eClassifiers [0..1] ePackage

eParameters

[0..1] eDperation

[..*] eQperations

[0..1] eContainingClass

[0..*] eExceptions

H Eclass

H EDataType

[0.."] feAliDperations

= abstract : EBoclean =false
o interface | EBoolean = false

[0..7] feAllStructuralF eatures

@ isSuperTypeOfisomeClass EClass) : EBoolean
@ getEStructuralFeature(featurelD Eint) : EStructuralFeature

= serializable : EBoolean =true

[0..%] eStructuralFeatures

Y EStructuralFeaturs

changeable ;: EBoclean = frue
volatile : EBoclean = false
transient : EBoolean = false
defaultvalueliteral : EString
Jdefaultvialue : EJavaObject
unsettable : EBoclean = false

o derived : EBoolean = false

& getFeaturelD() : Elnt

@ getContainerClass() : EJavaClass

ooooDooao

[0..1] eContainingClass

[1..1] feReferenceType

@ getEStructuralFeature(featureName EString) : EStructuralFeature

[0.."] /eAliContainments

[0..7] /feAllSuperTypes
[0.."] eSuperTypes

[EEnumLiteral W

= value : Elnt

= instance : EEnumerator
= literal : EString

] Ereference

[0..7] /eReferences

[0..%] eLiterals

= containment : EBoclean = false
o Jjcontainer | EBoolean = false

[0..7] feplReferences

[1..1] leAttributeType

o resolveProxies | EBoolean = true

[0..7] ekeys

H Eattribute

[0..1] e0pposite

[0..1] felDttribute

[2..1] eEnum

H EEnum

@& getEEnumLiteraliname EString) : EEnumLiteral
& getEEnumLiteralivalue Eint) : EEnumLiteral
@ getEEnumLiteralByLiteral(literal EString) : EEnumLiteral

= D : EBoolean = false

" [0..1] ieAttributes

[0.7] JeAlAtiributes

6.2. Comparison with MPS

76

https://download.eclipse.org/modeling/emf/emf/javadoc/2.11/org/eclipse/emf/ecore/package-summary.html

structure

@
=
=
frerd
o
=
=
e
wn

T o Y Y T A T T o T o T . T o T . T o T o A o O A o A T

77

[1] Rename M3 Metamodel to Language? #78

[2] Rename M3 property id — key #90

[3] Is version part of M3 Metamodel? #7

[4] Add version property to M3 Metamodel #92

[5] Shall we have "IKeyed " interface in M3? #142

[6] Is “Language.dependsOn" a "UsedLanguage " ? #145

[7] Metamodel dependencies: explicit, transitive? #50

[8] What does Language.version mean semantically? #130
[9] How to refer from one language to another? #131

[10] Details on builtin language #153

[11] Repo API: Do we need model partitions? #29

[12] If and how to represent Annotations in M3 #13

[13] Details on Annotations #154

[14] Can we have multiple instances of the same Annotation associated to a certain Node? #32
[15] Rename " ConceptInterface"? #190

[16] Rename FeaturesContainer to Classifier #105

[17] Which parts of a link can be specialized? #8

[18] Disallow redefining / overriding inherited feature #139
[19] Name clashes during inheritance #97

[20] Is M3 "NamespacedEntity " an abstract concept or interface? #143
[21] Allowed characters for names in metamodels #48

[22] Requirements on metamodel keys #91

[23] Change builtins language name? #195

[24] Key of builtin stdlib #141

[25] Discussion on implicitly importing stdlib

[26] Metalevel of builtin standard library #196

[27] Do we need to represent BaseConcept? #71

[28] Introducing the builtin interface INamed #86

[29] Supported built-in primitive types #9

[30] Metamodel.id/NamespacedEntity.id vs. Node id #80
[31] Rework NamespaceProvider and NamespacedEntity in M3 #146

78

https://github.com/LionWeb-io/specification/issues/78
https://github.com/LionWeb-io/specification/issues/90
https://github.com/LionWeb-io/specification/issues/7
https://github.com/LionWeb-io/specification/issues/92
https://github.com/LionWeb-io/specification/issues/142
https://github.com/LionWeb-io/specification/issues/145
https://github.com/LionWeb-io/specification/issues/50
https://github.com/LionWeb-io/specification/issues/130
https://github.com/LionWeb-io/specification/issues/131
https://github.com/LionWeb-io/specification/issues/153
https://github.com/LionWeb-io/specification/issues/29
https://github.com/LionWeb-io/specification/issues/13
https://github.com/LionWeb-io/specification/issues/154
https://github.com/LionWeb-io/specification/issues/32
https://github.com/LionWeb-io/specification/issues/190
https://github.com/LionWeb-io/specification/issues/105
https://github.com/LionWeb-io/specification/issues/8
https://github.com/LionWeb-io/specification/issues/139
https://github.com/LionWeb-io/specification/issues/97
https://github.com/LionWeb-io/specification/issues/143
https://github.com/LionWeb-io/specification/issues/48
https://github.com/LionWeb-io/specification/issues/91
https://github.com/LionWeb-io/specification/issues/195
https://github.com/LionWeb-io/specification/issues/141
https://github.com/LionWeb-io/specification/issues/9#issuecomment-1381934044
https://github.com/LionWeb-io/specification/issues/196
https://github.com/LionWeb-io/specification/issues/71
https://github.com/LionWeb-io/specification/issues/86
https://github.com/LionWeb-io/specification/issues/9
https://github.com/LionWeb-io/specification/issues/80
https://github.com/LionWeb-io/specification/issues/146

	LionWeb Meta-Metamodel (M3) Version 2023.1
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Languages supported
	1.3. What kind of models should be expressible?

	2. Overview
	3. Definition of the meta-metamodel
	3.1. Concepts
	3.1.1. Language
	3.1.2. Concept
	3.1.3. Annotation
	3.1.4. Interface
	3.1.5. PrimitiveType
	3.1.6. Enumeration
	3.1.7. EnumerationLiteral
	3.1.8. Containment
	3.1.9. Reference
	3.1.10. Property

	3.2. Abstract concepts
	3.2.1. LanguageEntity
	3.2.2. Classifier
	3.2.3. DataType
	3.2.4. Feature
	3.2.5. Link

	3.3. Interfaces
	3.3.1. IKeyed

	3.4. Pre-defined keys and ids
	3.4.1. Keys of M3 elements
	3.4.2. Ids of built-in elements

	3.5. Built-in elements
	3.5.1. Concepts
	3.5.2. Interfaces
	3.5.3. Primitive types

	3.6. Supporting terminology
	3.6.1. Multiplicity
	3.6.2. Partitions
	3.6.3. Identifiers
	3.6.4. Keys
	3.6.5. Namespaces

	4. Other considerations
	4.1. Reflection
	4.2. Generics
	4.3. References to language elements
	4.4. Union or intersection types
	4.5. Operations

	5. Reference models
	5.1. Meta-meta model
	5.2. Pre-defined elements

	6. Comparison with other meta-metamodels
	6.1. Comparison with Ecore
	6.2. Comparison with MPS

