
Bulk Repository Access API
The bulk API version 2024.1 is used to store and retrieve nodes in batches at the
moment of invocation.[1] It is intended for CRUD operations on (larger) sets of
nodes. it is not intended as a delta-oriented API that takes "modification
commands" as arguments.

Conventions used in this document
• ALL-CAPS key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP14 (RFC2119, RFC8174) when, and only
when, they appear in all capitals, as shown here.

• Footnotes refer to more discussions and rationale, but are non-normative.

Use Cases
We describe the use cases from a client’s perspective.

• "I’m starting up, which partitions do you know about?", i.e. list possible contents.

Table of Contents
Conventions used in this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Use Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Validity assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Out of scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Deleted nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Client ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Unknown node ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Message kinds for all commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

listPartitions: List available partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

createPartitions: Create new partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

deletePartitions: Delete partitions and all their contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

retrieve: Get nodes from repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

store: Put nodes into repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

ids: Get available ids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Mapping CRUD operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

1

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174


• "Let’s have a new slate, add a new partition", i.e. partition creation.

• "This part is not needed any more, remove the partition", i.e. partition deletion.

• "Give me the whole subtree under this node", i.e. actual bulk data retrieval

• "Here is a node forest, store it as I hand it to you", i.e. actual bulk data storage.

◦ Sub-case with same behavior: "I’m a very simple client who only knows load and save (like a
file), so whatever I send you is the truth", i.e. click-save-button.

• "I’m starting up, get me the current partition contents", i.e. initial load.

• "I want to create a guaranteed new node, which id to use?", i.e. retrieval of unused ids.

Validity assumptions
We don’t need to know anything about languages for this API.[2]

We never sent partial nodes or features.[3] Thus, we can only update or receive a complete node
with all its features. We cannot update only some of the features, or part of a feature (e.g. start of a
string property value).

We assume transactional semantics for each modifying command.[4] A command either succeeds
completely, or fails completely and does not change the repository’s content.

We do support invalid models w.r.t.[5]

• Violations of metamodel constraints, e.g. whether a Concept instance without parent is a
partition, a feature instance can be part of its node instance, or a node mentioned as annotation
is an Annotation instance.

• Unresolvable references, i.e. a reference target node id unknown to the repository.

We enforce conformance to[6]

• Tree structure (i.e. at most one parent for each node)

• Symmetry between containment/annotation and parent

• No unresolvable containment/annotation ids

• No unresolvable parent ids

• A child node id MUST appear exactly once in all of its parent’s containments

• An annotation node id MUST appear exactly once in all of its parent’s annotations

• Every node MUST (directly or indirectly) be contained in a partition, except partitions
themselves

• Partitions MUST NOT have a parent

Out of scope
We assume mapping API is separate from bulk API[7].

2

../serialization/serialization.pdf#reference


For now, we do not support paging, as paging tree nodes is non-trivial.[8]

For now, we don’t include any specific protections agains denial-of-service attacks.[9]

We don’t describe the binding to any specific protocol (e.g. HTTP) as part of this specification; We
only describe the semantics.[10]

Deleted nodes
We don’t have an explicit delete command for non-root nodes.[11] We delete non-root nodes
indirectly by sending their parent without the deleted node mentioned as child. We can
deletePartitions via explicit command.

We don’t support orphans for now. They are immediately deleted.[12]

Deleted nodes don’t exist anymore in the repository from the client’s point of view. They might still
exist in other contexts (e.g. another branch), or physically within the repository for internal reasons
(e.g. storage optimization, concurrent editing support). A deleted node MUST NOT appear in any
responses according to this API.[13]

A repository MAY consider the deleted node’s id to be unused, and thus allow to re-use it. A
repository also MAY disallow re-using previously deleted node ids.

Client ids
Each client MUST provide a unique client id when connecting to the repository.[14] The client id is an
id-compatible string. A client MAY connect more than once to the same repository at the same time
with the same client id. It is out of scope of LionWeb to guarantee the uniqueness of the client id.
The repository does not apply any uniqueness checks.

Unknown node ids
An unknown node id is a node id that’s not the node id of any node present in the repository. An
unknown node id can be present as a reference target (as we support unresolvable references).

How to handle unknown node ids in createPartitions and store commands?[7][15]

Scenarios:

Description: Node id … Valid
format

Format fits
repo

Presen
t in
repo

Reserv
ed

Repo action

already present in repository ✔️ ✔️ (repo
accepted it)

✔️ ✔️ error
(createPartitions
) / update node
(store)

3

../reference-architecture/reference-architecture.pdf#client
../serialization/serialization.pdf#id


Description: Node id … Valid
format

Format fits
repo

Presen
t in
repo

Reserv
ed

Repo action

requested by this client ✔️ ✔️ (repo handed
it out)

❌ ✔️ create node

requested by other client ✔️ ✔️ (repo handed
it out)

❌ ✔️ error

used previously by deleted node,
repo disallows re-use

✔️ ✔️ (repo handed
it out)

❌ ✔️ error

used previously by deleted node,
repo supports re-use

✔️ ✔️ (repo handed
it out)

❌ ❌ create node

invented by this client, requested
by other client

✔️ ✔️ (repo handed
it out)

❌ ✔️ error

invented by client, matches repo
format
Example: 123 for repo with
internal long ids

✔️ ✔️ ❌ ❌ create node

invented by client, violates repo
format
Example: ab123 for repo with
internal long ids

✔️ ❌️ ❌ ❌ create node

invented by client, invalid 
Example: he!!o

❌️️ ❌️ ❌ ❌ error

Responses
The repository signals success or failure with each response. We call this part of the reponse success
flag.

Besides the main response, the repository can reply each command with zero or more additional
messages.[16] Each message MUST have the following properties:

• kind is an id-compatible string identifying the message type. Some message kinds are pre-
defined in this specification. A repository MAY reply with other, additional message kinds.

• message is a human-readable string describing the message.

• data is a flat map with arbitrary keys and values. All values MUST be strings, the keys MUST be
id-compatible. A kind might imply presence of specific keys in data.

Message kinds for all commands

4

../serialization/serialization.pdf#id
../serialization/serialization.pdf#id


Kind Description Succe
ss

Implied data

`` TODO Invalid node id false invalidNodeId Id of non-partition node.

`` TODO Node with same id
sent more than
once

false TODO

`` TODO Invalid tree due to
concurrent
update[17]

false TODO

Commands

listPartitions: List available partitions
Lists all non-language partitions accessible in the repository.

Calling this command MUST NOT change repository contents.

NOTE We might add filter capabilities in the future.

Parameters

None.

Response

Contains a SerializationChunk with all accessible Partitions in the Repository. The partitions are
sent as complete nodes.[18] Does NOT include Languages or partition children/annotations.

Message kinds

None.

createPartitions: Create new partitions
Creates new partitions in the repository.[19]

Each sent node is its own partition. Thus, we cannot send the contents (i.e. (indirect)
annotations/containments) of a partition; We can send them in a later store call. We also MUST NOT
mention any annotation/containment node ids in the partition nodes, as they cannot be part of the
same request, and we don’t allow moving nodes in this operation. We MAY send properties and
references.[20]

Nodes MUST use Unknown node ids.

5

../serialization/serialization.pdf#SerializationChunk
../metametamodel/metametamodel.pdf#partition
../metametamodel/metametamodel.pdf#Language


Parameters

nodes

SerializationChunk containing all nodes we want to add as new partitions.

Response

Does not contain a chunk.

Message kinds

Kind Description Succe
ss

Implied data

PartitionHasParent Partition node
states parent id

false nodeId node id of requested partition
that has a parent.

PartitionAlreadyExi
sts

Partition node id
already exists

false nodeId Id of already existing node.

`` TODO Partition node id
not reserved for
this client

false TODO

PartitionHasChildre
n
PartitionHasAnnotat
ions TODO

Partition node lists
contained or
annotated nodes

false nodeId node id of requested partition
that has children or annotations.

EmptyChunk Empty Request true None

deletePartitions: Delete partitions and all their
contents
Deletes all mentioned partitions, including all (transitive) annotations and children.

All mentioned node ids MUST be ids of partition nodes.

All (transitive) annotations and children become orphans.

Parameters:

nodeIds

List of node ids to delete.

Response

Does not contain a chunk.

6

../serialization/serialization.pdf#SerializationChunk


Message kinds

Kind Description Succe
ss

Implied data

NodeIsNotPartition Node with that id is
not a partition

false nodeId Id of non-partition node.

parentNodeId Id of the parent node.

`` TODO Node with that id
does not exist

true TODO

retrieve: Get nodes from repository
Retrieves subtrees nested in the listed node ids.[21]

Calling this command MUST NOT change repository contents.

NOTE
We might add advanced filtering capabilities in the future, or introduce an
additional querying API.

Parameters

nodeIds

List of node ids we want to retrieve from the repository. Can be partition node ids and/or nested
node ids.

depthLimit

Limit the depth of retrieved subtrees. Optional parameter, defaults to infinite. If present, MUST
be an integer >= 0, with

• 0 meaning "return only the nodes with ids listed in nodeIds parameter",

• 1 meaning "return the nodes with id listed in the nodeIds parameter and their direct
children/annotations",

• 2 meaning "return the nodes with id listed in the nodeIds parameter, their direct
children/annotations, and the direct children/annotations of these",

• etc.

NOTE
There’s no magic value of depthLimit to express infinite depth. We need to omit
the parameter if we don’t want to limit the depth.

Response

SerializationChunk containing all nodes according to nodeIds and depthLimit parameters. Does NOT
include the definition of UsedLanguages, only their MetaPointers.

7

../serialization/serialization.pdf#SerializationChunk
../serialization/serialization.pdf#UsedLanguage
../serialization/serialization.pdf#MetaPointer


Message kinds

Kind Description Succe
ss

Implied data

IdNotFound Node with
requested id does
not exist

true nodeId Id of non-existent node

EmptyIdList Empty id list true None

IdsIncorrect Invalid ids
parameter

false nodeIds The invalid nodeIds parameter

DepthLimitIncorrect Invalid depthLimit
parameter

false depthLimit The invalid depthLimit
parameter.

store: Put nodes into repository
Creates new nodes, or updates existing nodes in the repository.

We always process one node in its entirety, i.e. we cannot update parts of the node with this
command.[3]

A node id referenced as parent, containment, reference, or annotation can be mentioned in the
same request, but can be omitted if a node with that id already exists in the repository. This way, we
can move subtrees and add arbitrary references without sending unchanged nodes.

We consider that node to be new if it has an unknown node id. Otherwise, we consider the node to
be updated (i.e. if a node with the same id already exists in the repository).

We do not support different modes.[22]

Parameters

nodes

SerializationChunk containing all nodes to store to the repository.

Semantics

After completing this call, all sent nodes MUST have exactly the sent contents in the repository. We
must send containments/annotations from the parent’s view, because we need to know the
containment and index of the contained node/annotation within its parent.

If we move a contained/annotation node C from its previous parent A to its new parent B, we MUST
send B, and MAY omit A.[23] This means we can have implicit changes in A.

The whole call fails, without any changes to the repository, if it would lead to a malformed
model.[6] The repository MUST NOT validate the metamodel constraints of the sent nodes.[5]

The repository MUST support changing meta-pointers, e.g. a node’s classifier.language, a

8

../serialization/serialization.pdf#SerializationChunk
../serialization/serialization.pdf#meta-pointer


property’s property.version or an enumeration literal’s key.[24]

Response

Does not contain a chunk.

Message kinds

Kind Description Succe
ss

Implied data

NullChunk Chunk missing false None

`` TODO Node id mentioned
as annotation/child
in more than one
parent

false TODO

`` TODO Move would create
loop in tree

false TODO

ParentMissing Parent / child /
annotation node id
unknown

false nodeId Id of node that doesn’t have a
parent.

`` TODO Parent doesn’t
match
child/annotation

false TODO

`` TODO New node id not
reserved for this
client

false TODO

ids: Get available ids
Provides unused valid ids.

The repository

• MUST NOT hand out the same unused ids to any other client.

• MAY hand out the same unused ids to the same client more than once.

• MUST NOT contain any node with any of the provided ids.

The ids MUST exclude the built-in ids.

Calling this command MUST NOT change repository contents themselves (besides the internal
knowledge of reserved ids).

We don’t assume leases, i.e. ids handed out to one client are "owned" by that client forever.
Rationale: Otherwise, the repository must track sessions, and run housekeeping on leases. This
would exclude simple repository implementations.

9

../metametamodel/metametamodel.pdf#identifiers
../metametamodel/metametamodel.pdf#predefined-builtins-keys


We assume infinite id space.

Parameters

count

Number of ids requested. The repository MUST return between one (inclusive) and count
(inclusive) ids. It MAY return less than count ids.

Response

List of ids guaranteed to be free.

Message kinds

None.

Mapping CRUD operations
list

listPartitions for partitions, retrieve for descendants.

read

retrieve call with requested node ids (both partitions and other nodes).

create

createPartitions for partitions, store call that sends a node with a new id, including all its
features.

update

store call that sends a node (both partitions and other nodes) with an existing id, including all its
features (both updated and unchanged).

delete

deletePartitions for partitions (including all descendants), for others store of the parent node
without mentioning the deleted node.

move

Assume we want to move node N from its current parent S to its new parent T.

store call that sends T with all its features, including N in the children.

NOTE We cannot move partitions, as we cannot nest them.[25]

[1] Repo API: Bulk read/write #25

[2] How to separate between simple and advanced Bulk API? #203

[3] We always transmit complete nodes in bulk API #211

[4] Bulk API assumes transactional semantics for changing operations #229

[5] Does bulk API validate against languages? #226

10

https://github.com/LionWeb-io/specification/issues/25
https://github.com/LionWeb-io/specification/issues/203
https://github.com/LionWeb-io/specification/issues/211
https://github.com/LionWeb-io/specification/issues/229
https://github.com/LionWeb-io/specification/issues/226


[6] Which kinds of invalid nodes does Bulk API accept? #223

[7] Provide id mapping API #94

[8] Do we need a paging functionality in bulk API? #204

[9] Denial-of-service protection is out of scope (at least for now) #237

[10] Level of detail on API specifications #148

[11] Explicit delete operation in bulk API? #221

[12] Optionally support orphans in repository #219

[13] What does it mean to delete a node #220

[14] A client must identify to repository with unique id #241

[15] Can Repositories have stricter requirements on node IDs than LIonWeb (e.g. only longs)? #70

[16] How to report additional info in bulk API? #236

[17] Report model update issues due to concurrent edits separately? #238

[18] Return whole nodes when querying existing partitions #202

[19] How to create and delete partitions #216

[20] Can we send features during createPartition()? #225

[21] Don’t provide `closure` retrieve mode in simple bulk API #201

[22] Which modes to support in bulk API store? #230

[23] When moving a node, do we need to mention both source and target parent? #227

[24] Node update: do we allow concept change? #69

[25] Repo API: Do we need model partitions? #29

11

https://github.com/LionWeb-io/specification/issues/223
https://github.com/LionWeb-io/specification/issues/94
https://github.com/LionWeb-io/specification/issues/204
https://github.com/LionWeb-io/specification/issues/237
https://github.com/LionWeb-io/specification/issues/148
https://github.com/LionWeb-io/specification/issues/221
https://github.com/LionWeb-io/specification/issues/219
https://github.com/LionWeb-io/specification/issues/220
https://github.com/LionWeb-io/specification/issues/241
https://github.com/LionWeb-io/specification/issues/70
https://github.com/LionWeb-io/specification/issues/236
https://github.com/LionWeb-io/specification/issues/238
https://github.com/LionWeb-io/specification/issues/202
https://github.com/LionWeb-io/specification/issues/216
https://github.com/LionWeb-io/specification/issues/225
https://github.com/LionWeb-io/specification/issues/201
https://github.com/LionWeb-io/specification/issues/230
https://github.com/LionWeb-io/specification/issues/227
https://github.com/LionWeb-io/specification/issues/69
https://github.com/LionWeb-io/specification/issues/29

	Bulk Repository Access API
	Table of Contents
	Conventions used in this document
	Use Cases
	Validity assumptions
	Out of scope
	Deleted nodes
	Client ids
	Unknown node ids
	Responses
	Message kinds for all commands
	Commands
	listPartitions: List available partitions
	createPartitions: Create new partitions
	deletePartitions: Delete partitions and all their contents
	retrieve: Get nodes from repository
	store: Put nodes into repository
	ids: Get available ids

	Mapping CRUD operations

